Multiple Sclerosis Resource Centre

Welcome to the Multiple Sclerosis Resource Centre. This website is intended for international healthcare professionals with an interest in Multiple Sclerosis. By clicking the link below you are declaring and confirming that you are a healthcare professional

You are here

The role of CNS TLR2 activation in mediating innate versus adaptive neuroinflammation

Avital Luz, Nina Fainstein, Ofira Einstein, Tamir Ben–Hur

Abstract
 

Toll-like receptor 2 (TLR2) is expressed on immune cells in the periphery and the CNS and mediates both innate and adaptive immune responses. Recent studies have implicated TLR2 in systemic pathogenesis of adaptive immunity in experimental autoimmune encephalomyelitis (EAE). In addition, TLR2 is expressed on oligodendrocyte progenitor cells and its activation inhibits their differentiation and myelination. We investigated the roles of CNS TLR2 activation in mediating neuro-inflammatory responses in intact versus EAE animals. We examined the effects of intra-cerebro-ventricular (ICV) injection of Zymosan, a TLR2 agonist, on naive versus EAE animals. The neuro-inflammatory response was characterized by immune-fluorescent staining for IBA-1 + microglia/macrophages and CD3 + T cells, and by semi-quantitative real time PCR for TLR2 and immune cytokines. The nature of the immune cells isolated from EAE brain tissue was assessed by their proliferative response to the PLP peptide autoantigen. Survival and clinical scores were monitored; demyelination and axonal loss were quantified by Gold-Black and Bielschowsky stains. Our findings showed that Zymosan injection in naïve mice induced a massive neuro-inflammatory response without any clinical manifestations. In EAE mice, ICV Zymosan induced a severe acute toxic response with 80% mortality. Surviving animals returned to pre-injection clinical score, and their course of disease was not altered as compared to control EAE group. Demyelination and axonal loss were not affected by ICV Zymosan injection. Quantification of immune response in the brain by real time PCR, immunofluorescent stains and proliferative response to PLP peptide suggested that TLR2 activation induces innate but not adaptive immune response. We conclude that EAE mice are hypersensitive to CNS TLR2 activation with a severe toxic response. This might represent the susceptibility of multiple sclerosis patients to even trivial infections. As CNS TLR2 activation does not alter the clinical and pathological course of EAE, it implies that CNS TLR2 activation affects the innate but not adaptive brain immune responses.


Search this site

Stay up-to-date with our monthly e-alert

If you want to regularly receive information on what is happening in MS research sign up to our e-alert.

Subscribe »

About the Editors

  • Prof Timothy Vartanian

    Timothy Vartanian, Professor at the Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, Cornell...
  • Dr Claire S. Riley

    Claire S. Riley, MD is an assistant attending neurologist and assistant professor of neurology in the Neurological Institute, Columbia University,...
  • Dr Rebecca Farber

    Rebecca Farber, MD is an attending neurologist and assistant professor of neurology at the Neurological Institute, Columbia University, in New...

This online Resource Centre has been made possible by a donation from EMD Serono, Inc., a business of Merck KGaA, Darmstadt, Germany.

Note that EMD Serono, Inc., has no editorial control or influence over the content of this Resource Centre. The Resource Centre and all content therein are subject to an independent editorial review.

The Grant for Multiple Sclerosis Innovation
supports promising translational research projects by academic researchers to improve understanding of multiple sclerosis (MS) for the ultimate benefit of patients.  For full information and application details, please click here

Journal Editor's choice

Recommended by Prof. Brenda Banwell

Causes of death among persons with multiple sclerosis

Gary R. Cutter, Jeffrey Zimmerman, Amber R. Salter, et al.

Multiple Sclerosis and Related Disorders, September 2015, Vol 4 Issue 5