Multiple Sclerosis Resource Centre

Welcome to the Multiple Sclerosis Resource Centre. This website is intended for international healthcare professionals with an interest in Multiple Sclerosis. By clicking the link below you are declaring and confirming that you are a healthcare professional

You are here

Measuring longitudinal myelin water fraction in new multiple sclerosis lesions

Wendy S. Vargas, Elizabeth Monohan, Sneha Pandya, Ashish Raj, Timothy Vartanian, Thanh D. Nguyen, Sandra M. Hurtado Rúa, Susan A. Gauthier

NeuroImage: Clinical, Volume 9, 2015, Pages 369-375


  • FAST-T2 can measure the extent of myelin loss within early MS lesions.
  • The largest study utilizing an in-vivo MRI method to assess MS lesion change
  • The majority of change occurs in the earliest stages after MS lesion development.
  • The intensity of the acute inflammatory event is detrimental on MWF recovery



Investigating the potential of myelin repair strategies in multiple sclerosis (MS) requires an understanding of myelin dynamics during lesion evolution. The objective of this study is to longitudinally measure myelin water fraction (MWF), an MRI biomarker of myelin, in new MS lesions and to identify factors that influence their subsequent myelin content.


Twenty-three MS patients were scanned with whole-brain Fast Acquisition with Spiral Trajectory and T2prep (FAST-T2) MWF mapping at baseline and median follow-up of 6 months. Eleven healthy controls (HC) confirmed the reproducibility of FAST-T2 in white matter regions of interests (ROIs) similar to a lesion size. A random-effect-model was implemented to determine the association between baseline clinical and lesion variables and the subsequent MWF.


ROI-based measurements in HCs were highly correlated between scans [mean r = 0.893 (.764–.967)]. In MS patients, 38 gadolinium enhancing (Gd+) and 25 new non-enhancing (Gd−) T2 hyperintense lesions (5.7 months, ±3.8) were identified. Significant improvement in MWF was seen in Gd+ lesions (0.035 ± 0.029, p < 0.001) as compared to Gd− lesions (0.006 ± 0.017, p = 0.065). In the model, a higher baseline MWF (p < 0.001) and the presence of Gd (p < 0.001) were associated with higher subsequent MWF.


FAST T2 provides a clinically feasible method to quantify MWF in new MS lesions. The observed influence of baseline MWF, which represents a combined effect of both resolving edema and myelin change within acute lesions, suggests that the extent of initial inflammation impacts final myelin recovery.

Search this site

Stay up-to-date with our monthly e-alert

If you want to regularly receive information on what is happening in MS research sign up to our e-alert.

Subscribe »

About the Editors

  • Prof Timothy Vartanian

    Timothy Vartanian, Professor at the Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, Cornell...
  • Dr Claire S. Riley

    Claire S. Riley, MD is an assistant attending neurologist and assistant professor of neurology in the Neurological Institute, Columbia University,...
  • Dr Rebecca Farber

    Rebecca Farber, MD is an attending neurologist and assistant professor of neurology at the Neurological Institute, Columbia University, in New...

This online Resource Centre has been made possible by a donation from EMD Serono, Inc., a business of Merck KGaA, Darmstadt, Germany.

Note that EMD Serono, Inc., has no editorial control or influence over the content of this Resource Centre. The Resource Centre and all content therein are subject to an independent editorial review.

The Grant for Multiple Sclerosis Innovation
supports promising translational research projects by academic researchers to improve understanding of multiple sclerosis (MS) for the ultimate benefit of patients.  For full information and application details, please click here

Journal Editor's choice

Recommended by Prof. Brenda Banwell

Causes of death among persons with multiple sclerosis

Gary R. Cutter, Jeffrey Zimmerman, Amber R. Salter, et al.

Multiple Sclerosis and Related Disorders, September 2015, Vol 4 Issue 5