Multiple Sclerosis Resource Centre

Welcome to the Multiple Sclerosis Resource Centre. This website is intended for international healthcare professionals with an interest in Multiple Sclerosis. By clicking the link below you are declaring and confirming that you are a healthcare professional

You are here

Hippocampal function is compromised in an animal model of multiple sclerosis

T. Novkovica, O. Shchygloa, R. Goldb, D. Manahan-Vaughana


Multiple sclerosis (MS) is a progressive inflammatory autoimmune disease that is characterized by demyelination and axonal damage in the nervous system. One obvious consequence is a cumulative loss of muscle control. However, cognitive dysfunction affects roughly half of MS sufferers, sometimes already early in the disease course. Although long-term (remote) memory is typically unaffected, the ability to form new declarative memories becomes compromised. A major structure for the encoding of new declarative memories is the hippocampus. Encoding is believed to be mediated by synaptic plasticity in the form of long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength. Here, in an animal model of MS we explored whether disease symptoms are accompanied by a loss of functional neuronal integrity, synaptic plasticity, or hippocampus-dependent learning ability. In mice that developed MOG35–55-induced experimental autoimmune encephalomyelitis (EAE), passive properties of CA1 pyramidal neurons were unaffected, although the ability to fire action potentials became reduced in the late phase of EAE. LTP remained normal in the early phase of MOG35–55-induced EAE. However, in the late phase, LTP was impaired and LTP-related spatial memory was impaired. In contrast, LTD and hippocampus-dependent object recognition memory were unaffected. These data suggest that in an animal model of MS hippocampal function becomes compromised as the disease progresses.

Search this site

Stay up-to-date with our monthly e-alert

If you want to regularly receive information on what is happening in MS research sign up to our e-alert.

Subscribe »

About the Editors

  • Prof Timothy Vartanian

    Timothy Vartanian, Professor at the Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, Cornell...
  • Dr Claire S. Riley

    Claire S. Riley, MD is an assistant attending neurologist and assistant professor of neurology in the Neurological Institute, Columbia University,...
  • Dr Rebecca Farber

    Rebecca Farber, MD is an attending neurologist and assistant professor of neurology at the Neurological Institute, Columbia University, in New...

This online Resource Centre has been made possible by a donation from EMD Serono, Inc., a business of Merck KGaA, Darmstadt, Germany.

Note that EMD Serono, Inc., has no editorial control or influence over the content of this Resource Centre. The Resource Centre and all content therein are subject to an independent editorial review.

The Grant for Multiple Sclerosis Innovation
supports promising translational research projects by academic researchers to improve understanding of multiple sclerosis (MS) for the ultimate benefit of patients.  For full information and application details, please click here

Journal Editor's choice

Recommended by Prof. Brenda Banwell

Causes of death among persons with multiple sclerosis

Gary R. Cutter, Jeffrey Zimmerman, Amber R. Salter, et al.

Multiple Sclerosis and Related Disorders, September 2015, Vol 4 Issue 5